1. Pavan Kumar Gangineni, Satyaroop Patnaik, Rajesh Kumar Prusty, Bankim Chandra Ray "Mechanical behavior of electrophoretically modified CFRP composites at elevated temperatures: An assessment of the influence of graphene carboxyl bath concentration." Journal of Applied Polymer Science (2021) https://doi.org/10.1002/app.51365

  2. Sumit Dash, Soumya, et al. "Evaluation of mechanical behaviour of graphene oxide grafted CFRP composites: a comparison of anodic and cathodic EPD." Advances in Materials and Processing Technologies (2021): 1-9.

  3. Gupta, Savita, et al. "Strength degradation and fractographic analysis of carbon fiber reinforced polymer composite laminates with square/circular hole using scanning electron microscope micrographs." Journal of Applied Polymer Science 138.8 (2021): 49878.

  4. Dasari, Srinivasu, et al. "Effects of Cryogenic Aging on Flexural Behavior of Advanced Inter-ply Hybrid Fiber-Reinforced Polymer Composites." Transactions of the Indian Institute of Metals (2021): 1-13.

  5. De, Soubhik, et al. "Improving delamination resistance of carbon fiber reinforced polymeric composite by interface engineering using carbonaceous nanofillers through electrophoretic deposition: An assessment at different in‐service temperatures." Journal of Applied Polymer Science 138.15 (2021): 50208.

  6. Ganesh Gupta K. B. N. V. S, Hiremath, Mritunjay Maharudrayya, Bankim Chandra Ray, Rajesh Kumar Prusty; "Improved mechanical responses of GFRP composites with epoxy-vinyl ester interpenetrating polymer network." Polymer Testing 93 (2021): 107008.

  7. Shiny ​Lohani, Shubham, Rajesh Kumar Prusty, and Bankim Chandra Ray. "Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites." Materials Today: Proceedings (2021).

  8. Ganesh Gupta K, B. N. V. S, Hiremath, Mritunjay Maharudrayya, Rajesh Kumar Prusty, Bankim Chandra Ray; Development of advanced fiber‐reinforced polymer composites by polymer hybridization technique: Emphasis on cure kinetics, mechanical, and thermomechanical performance." Journal of Applied Polymer Science 137.43 (2020): 49318.

  9. Srinivasu D, Sushant S, R. K. Prusty, Temperature and loading speed sensitivity of glass/carbon inter‐ply hybrid polymer composites on tensile loading. J Appl Polym Sci. 2021;138:e49928. https://doi.org/10.1002/app.49928

  10. Ganesh Gupta K. B. N. V. S, Hiremath, Mritunjay Maharudrayya, A. O. Fulmali, Rajesh Kumar Prusty, Bankim Chandra Ray; "Multimaterial laminated composites: an assessment of effect of stacking sequence on flexural response." Materials Today: Proceedings (2020).

  11. Yadav Avadesh, Ganesh Gupta K. B. N. V. S, A. O. Filmali, Rajesh Kumar Prusty, Bankim Chandra Ray; "Effect of cure kinetics and nanomaterials on glass fiber/vinyl ester composites: An assessment on mechanical, thermal and fracture morphology." Materials Today: Proceedings 33(2020): 4937-4941.

  12. Prusty, R.K., Narayan, R.L., Scherer, M., Steiner, U., Deshpande, V.S., Fleck, N.A. and Ramamurty, U., 2020. Spherical indentation response of a Ni double gyroid nanolattice. Scripta Materialia, 188, pp.64-68.​ https://doi.org/10.1016/j.scriptamat.2020.07.011

  13. Anand A, Banerjee P, Prusty RK, Chandra Ray B. Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle. IOP Conf Ser Mater Sci Eng 2018;338. https://doi.org/10.1088/1757-899X/338/1/012020.

  14. Kumar Mahato K, Kumar Rathore D, Dutta K, Kumar Prusty R, Chandra Ray B. Effect of severely thermal shocked nano-Al2O3 filled glass fiber reinforced polymeric composites: An assessment on tensile, thermal and morphological behaviour. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.03.334.

  15. Saurabh S, Dasari S, Chandra Ray B, Kumar Prusty R. Mode I interlaminar fracture toughness improvement of the glass/epoxy composite by using multiscale composite approach. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.03.023.

  16. Patnaik S, Gangineni PK, Panda A, Prusty RK, Ray BC. Interlaminar performance of graphene carboxyl modified CFRP composites: Effect of cryogenic conditioning. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.03.166.

  17. Hiremath MM, Ganesh Gupta K BNVS, Prusty RK, Ray BC. Mechanical and thermal performance of recycled glass fiber reinforced epoxy composites embedded with carbon nanotubes. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.838.

  18. Hiremath MM, Ganesh Gupta K BNVS, Sen B, Prusty RK, Ray BC. Effect of in-situ temperature variation on mechanical response of glass/vinyl ester composites. Mater Today Proc 2020:1–5. https://doi.org/10.1016/j.matpr.2020.01.595.

  19. Patnaik S, Gangineni PK, Prusty RK. Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers. Compos Commun 2020;20:100369. https://doi.org/10.1016/j.coco.2020.100369.

  20. Sen B, Fulmali AO, Gupta K BNVSG, Prusty RK, Ray BC. A study of the effect of carbon nanotube/nanoclay binary nanoparticle reinforcement on glass fibre/epoxy composites. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.440.

  21. Ganesh Gupta K BNVS, Hiremath MM, Sen B, Prusty RK, Ray BC. Influence of loading rate on adhesively bonded Tin-glass/epoxy single lap joint. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.406.

  22. Ganesh Gupta K BNVS, Hiremath MM, Fulmali AO, Prusty RK, Ray BC. Investigation of adhesively bonded multi-material joints: An assessment on joint efficiency and fracture morphology. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.074.

  23. Ganesh Gupta K BNVS, Yadav A, Hiremath MM, Prusty RK, Ray BC. Enhancement of mechanical properties of glass fiber reinforced vinyl ester composites by embedding multi-walled carbon nanotubes through solution processing technique. Mater Today Proc 2020:1–6. https://doi.org/10.1016/j.matpr.2020.01.391.

  24. Dasari S, Saurabh S, Mahato KK, Prusty RK, Chandra Ray B. Mechanical properties of glass/carbon inter-ply hybrid polymer composites at different in-situ temperatures. Mater Today Proc 2020:3–8. https://doi.org/10.1016/j.matpr.2020.03.555.

  25. Yandrapu S, Gangineni PK, Ramamoorthy SK, Ray BC, Prusty RK. Effects of electrophoretic deposition process parameters on the mechanical properties of graphene carboxyl-grafted carbon fiber reinforced polymer composite. J Appl Polym Sci 2020;137:1–11. https://doi.org/10.1002/app.48925.

  26. Nayak BA, Shubham, Prusty RK, Ray BC. Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.852.

  27. Jena A, Shubham, Prusty RK, Ray BC. Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass Fiber/Epoxy composites. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.879.

  28. De S, Fulmali AO, Shivangi PN, Choudhury S, Prusty RK, Ray BC. Interface modification of carbon fiber reinforced epoxy composite by hydroxyl/carboxyl functionalized carbon nanotube. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.970.

  29. Patnaik S, Gangineni PK, Ray BC, Prusty RK. Effect of graphene-based nanofillers addition on the interlaminar performance of CFRP composites: An assessment of cryo-conditioning. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.02.846.

  30. Dasari S, Saurabh S, Gupta S, Ray BC, Prusty RK. Experimental amelioration of flexural behavior under cryogenic conditioning through inter-ply fiber hybridization in FRP composites. Mater Today Proc 2020. https://doi.org/10.1016/j.matpr.2020.03.336.

  31. Yandrapu S, Gangineni PK, De S, Ray BC, Prusty RK. Effect of bath concentration during electrophoretic deposition on the interfacial behaviour of hybrid CFRP composites.MaterSciForum2020;978MSF:304–10. https://doi.org/10.4028/www.scientific.net/MSF.978.304.

  32. Nuli KC, Fulmali AO, Nagesh, Sen B, Mahato KK, Prusty RK, et al. Synergetic impact of carbon nanotube and/or graphene reinforcement on the mechanical performance of glass fiber/epoxy composite. Mater Sci Forum 2020;978 MSF:284–90. https://doi.org/10.4028/www.scientific.net/MSF.978.284.

  33. Mahato KK, Nuli KC, Dutta K, Prusty RK, Ray BC. Thermal shock effect of Nano-TiO2 enhanced glass fiber reinforced polymeric composites: An assessment on tensile and thermal behavior. Mater Sci Forum 2020;978 MSF:277–83. https://doi.org/10.4028/www.scientific.net/MSF.978.277.

  34. Mechanical modelling and experimental validation of woven composites. Authored by: Shubham, Rajesh Kumar Prusty, Bankim Chandra Ray Published in: Materials Today: Proceedings  (https://doi.org/10.1016/j.matpr.2019.11.082)

  35. Abhinav O. Fulmali, Bhaskar Sen, Bankim C. Ray, Rajesh K. Prusty "Effects of carbon nanotube/polymer interfacial bonding on the long‐term creep performance of nanophased glass fiber/epoxy composites" Polymer COMPOSITES (2019). (https://doi.org/10.1002/pc.25381)

  36. Kattaguri, Rani, Abhinav Omprakash Fulmali, Rajesh Kumar Prusty, and Bankim Chandra Ray. "Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers." Journal of Applied Polymer Science (2019): 48434. (https://doi.org/10.1002/app.48434)

  37. Mahato, Kishore Kumar, Krishna Dutta, and Bankim Chandra Ray, “Assessment of Mechanical, Thermal and Morphological Behavior of Nano-Al2O3 Embedded Glass Fiber/Epoxy Composites at in-Situ Elevated Temperatures,” Composites Part B: EngineeringVol. 166, 2019, pp. 688–700.(https://doi.org/10.1016/j.compositesb.2019.03.009)
  38. Anand, Abhijeet, Poulami Banerjee, Debaraj Sahoo, Dinesh Kumar Rathore, Rajesh Kumar Prusty, and Bankim Chandra Ray, “Effects of Temperature and Load on the Creep Performance of CNT Reinforced Laminated Glass Fiber/Epoxy Composites,” International Journal of Mechanical SciencesVol. 150, 2019, pp. 539–547.(doi: 10.1016/j.ijmecsci.2018.09.048)
  39. Anand, Abhijeet, Poulami Banerjee, Debaraj Sahoo, Dinesh Kumar Rathore, Rajesh Kumar Prusty, and Bankim Chandra Ray, “Effects of Temperature and Load on the Creep Performance of CNT Reinforced Laminated Glass Fiber/Epoxy Composites,” International Journal of Mechanical SciencesVol. 150, 2019, pp. 539–547.(https://doi.org/10.1002/app.47674)

  40. Gangineni, Pavan Kumar, Sagar Yandrapu, Sohan Kumar Ghosh, Abhijeet Anand, Rajesh Kumar Prusty, and Bankim Chandra Ray, “Mechanical Behavior of Graphene Decorated Carbon Fiber Reinforced Polymer Composites: An Assessment of the Influence of Functional Groups,” Composites Part A: Applied Science and ManufacturingVol. 122, 2019, pp. 36–44. (https://doi.org/10.1016/j.compositesa.2019.04.017).

  41. ​P. N. Harshita, D. K. Rathore, R. K. Prusty, B.c. Ray, Extrapolation of Mechanical Strengthening Effect in Nanoclay/Epoxy Nanocomposites to Elevated Temperature Environments, Trans Indian Inst Met, 1-10 (2018). doi: 10.1007/s12666-018-1334-8.

  42. S.K. Ghosh, P. Rajesh, B. Srikavya, D.K. Rathore, R.K. Prusty, B. Chandra Ray, Creep behavior prediction of multi-layer graphene embedded glass fiber/epoxy composites using time-temperature superposition principle, Compos. Part Appl. Sci. Manuf. 107 (2018) 507-518, doi:10.1016/j.compositesa.2018.01.030.

  43. R K Nayak, B C Ray, Retention of Mechanical and Thermal Properties of Hydrothermal Aged Glass Fiber-Reinforced Polymer Nanocomposites, Polymer-Plastics Technology and Engineering, 1-11, (2018), doi:10.1080/03602559.2017.1419486

  44. R.K. Prusty, D.K. Rathore, B.C. Ray, Water-induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature, J. Appl. Polym. Sci. ., 135 (11) (2018),doi:10.1002/app.45987.

  45. K. K. Mahato, K. Dutta, B. C. Ray, Loading rate sensitivity of liquid nitrogen conditioned glass fiber reinforced polymeric composites: An emphasis on tensile and thermal responses, J. App. Poly. Sci., 135 (9) (2018), doi:10.1002/app.45856.

  46. R.K. Prusty, D.K. Rathore, B.C. Ray, Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures, Compos. Part Appl. Sci. Manuf. 101 (2017) 215–226. doi:10.1016/j.compositesa.2017.06.020.

  47. R. K. Nayak, B. C. Ray, Water absorption, residual mechanical and thermal properties of hydrothermally conditioned nano-Al2O3 enhanced glass fiber reinforced polymer composites, Polymer Bulletin 74 (10), 4175-4194, (2017), doi: 10.1007/s00289-017-1954-x.

  48. S.K. Ghosh, R.K. Prusty, D.K. Rathore, B.C. Ray, Creep behaviour of graphite oxide nanoplates embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress, Compos. Part Appl. Sci. Manuf. (2017). doi:10.1016/j.compositesa.2017.08.001.

  49. D.K. Rathore, R.K. Prusty, B.C. Ray, Mechanical, thermomechanical, and creep performance of CNT embedded epoxy at elevated temperatures: An emphasis on the role of carboxyl functionalization, J. Appl. Polym. Sci. 134 (2017). doi:10.1002/app.44851.

  50. R.K. Prusty, S.K. Ghosh, D.K. Rathore, B.C. Ray, Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content, Compos. Part Appl. Sci. Manuf. 95 (2017) 40–53. doi:10.1016/j.compositesa.2017.01.001.

  51. K. K. Mahato, K. Dutta, B. C. Ray, Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions, Journal of Polymers and the Environment, 1-27 (2017), doi: 10.1007/s10924-017-1001-x.

  52. R.K. Prusty, D.K. Rathore, S. Sahoo, V. Parida, B.C. Ray, Mechanical behaviour of graphene oxide embedded epoxy nanocomposite at sub- and above- zero temperature environments, Compos. Commun. 3 (2017) 47–50. doi:10.1016/j.coco.2017.02.003.

  53. K. K. Mahato, D. K. Rathore, K. Dutta and B. C. Ray, Effect of loading rates of severely thermal-shocked glass fiber/epoxy composites, Comp. Commu., 3, (2017), 7-10, doi: 10.1016/j.coco.2016.11.001.

  54. K. K. Mahato, K. Dutta and B. C. Ray, High‐temperature tensile behavior at different crosshead speeds during loading of glass fiber‐reinforced polymer composites, J. App. Poly. Sci, 134 (16) (2017), doi:10.1002/app.44715.

  55. D.K. Rathore, R.K. Prusty, S.C. Mohanty, B.P. Singh, B.C. Ray, In-situ elevated temperature flexural and creep response of inter-ply glass/carbon hybrid FRP composites, Mech. Mater. 105 (2017) 99–111. doi:10.1016/j.mechmat.2016.11.013.

  56. R.K. Prusty, D.K. Rathore, B.C. Ray, CNT/polymer interface in polymeric composites and its sensitivity study at different environments, Adv. Colloid Interface Sci. 240 (2017) 77–106. doi:10.1016/j.cis.2016.12.008.

  57. D.K. Rathore, B.P. Singh, S.C. Mohanty, R.K. Prusty, B.C. Ray, Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite, Compos. Commun. 1 (2016) 29–32. doi:10.1016/j.coco.2016.08.002.

  58. M.J. Shukla, D.S. Kumar, D.K. Rathore, R.K. Prusty, B.C. Ray, An assessment of flexural performance of liquid nitrogen conditioned glass/epoxy composites with multiwalled carbon nanotube, J. Compos. Mater. 50 (2016) 3077–3088. doi:10.1177/0021998315615648.

  59. R.K. Prusty, D.K. Rathore, B.P. Singh, S.C. Mohanty, K.K. Mahato, B.C. Ray, Experimental optimization of flexural behaviour through inter-ply fibre hybridization in FRP composite, Constr. Build. Mater. 118 (2016) 327–336. doi:10.1016/j.conbuildmat.2016.05.054.

  60. D.K. Rathore, R.K. Prusty, D.S. Kumar, B.C. Ray, Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content, Compos. Part Appl. Sci. Manuf. 84 (2016) 364–376. doi:10.1016/j.compositesa.2016.02.020.

  61. R. K. Nayak, K. K. Mahato, and B. C. Ray, “Water Absorption Behavior, Mechanical and Thermal Properties of NanoTiO2 Enhanced Glass Fiber Reinforced Polymer Composites,” Compos. Part Appl. Sci. Manuf.  90 (2016), doi:10.1016/j.compositesa.2016.09.003.

  62. R. K. Nayak, K. K. Mahato, B. C. Routara, and B. C. Ray, “Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites,” J. Appl. Polym. Sci.,  133,  (2016), doi:10.1002/app.44274

  63. R. K. Nayak, D. Rathore, B. C. Routara, and B. C. Ray, “Effect of nano Al2O3 fillers and cross head velocity on interlaminar shear strength of glass fiber reinforced polymer composite,” Int. J. Plast. Technol., 20, (2016), doi: 10.1007/s12588-016-9158-z.

  64. R.K. Prusty, D.K. Rathore, M.J. Shukla, B.C. Ray, Flexural behaviour of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation, Compos. Part B Eng. 83 (2015) 166–174. doi:10.1016/j.compositesb.2015.08.035.

  65. S Sethi, B C Ray, Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability, Adv. Coll. Int. Sci. 217, (2015), doi: 10.1016/j.cis.2014.12.005.

  66. B C Ray and D Rathore, Environmental damage and degradation of FRP composites: A review report, Polymer Composites, 36, (2015), doi :10.1002/pc.22967.

  67. S Sethi, D K Rathore, B C Ray, Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: An evaluation for in-situ environment, Mater. Des., 65, (2014), 617-626, doi: 10.1016/j.matdes.2014.09.053.

  68. S Sethi, B C Ray, Experimental study on the mechanical behavior and microstructural assessment of Kevlar/epoxy composites at liquid nitrogen temperature, Journal of the Mechanical Behavior of Materials, 23, (2014), doi:10.1515/jmbm-2014-0011.

  69. B C Ray and D Rathore, Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments, Adv. Coll. Int. Sci., 209, (2014), doi: 10.1016/j.cis.2013.12.014.

  70. S Sethi, B C Ray, An assessment of mechanical behavior and fractography study of glass/epoxy composites at different temperatures and loading speeds, Materials and Design, 64, (2014), doi:10.1016/j.matdes.2014.07.017.

  71. S Sethi, P K Panda, R Nayak and B C Ray, Experimental studies on mechanical behavior and microstructural assessment of glass/epoxy composites at low temperatures Journal of Reinforced Plastics and Composites, 31, (2012), doi:10.1177/0731684411431767.

  72. S Sethi and B C Ray, Effect of Nanoparticle in FRP Composites on Evaluation of Loading Rate Sensitivity, International Journal of Composite Materials 3(6) 2013.

  73. S.Sethi, B.C.Ray, An assessment of interfacial chemistry and character of fiber/polymer micro-composites, Journal of Materials & Metallurgical Engineering, 3(1) 2013.

  74. S.Sethi, P K Panda, R Nayak and B. C. Ray, Experimental studies on mechanical behavior and microstructural assessment of glass/epoxy composites at low temperatures Journal of Reinforced Plastics and Composites, 31(2) (2012) 67-76.

  75. S Sethi and B C Ray, Evaluation of structural integrity and mechanical behavior of advanced FRP composites, Int. J. of Structural Integrity, 2(2) 2011.

  76. G. Mishra, S. R. Mohapatra, P. R. Behera, B. Dash, U.K. Mohanty and B.C.Ray Environmental stability of GFRP laminated composites: An emphasis on mechanical behavior, Aircraft Engineering and Aerospace Technology, 82 (4) 2010, 258-66.

  77. Surendra Kumar, M Sharma, Neeti B. C. Ray, Structural Integrity of Glass/Polyester Composites at Liquid Nitrogen Temperature, Journal of Reinforced Plastics and Composites,28 (11) 2009 1297-1304.

  78. Surendra Kumar, M Sharma, Neeti B. C. Ray, Microstructural and Mechanical Aspects of Carbon/Epoxy Composites at Liquid Nitrogen Temperature Journal of Reinforced Plastics and Composites, 28(16) 2009 2013-2023.

  79. N Sharma, M K Surendra and B. C. Ray, Study the Effect of Hygrothermal Ageing on Glass/Epoxy Micro-composites by FTIR Imaging and Alternating DSC Techniques, Journal of Reinforced Plastics and Composites 27(15) 2008 1625-1634.

  80. M K Surendra, N Sharma and B. C. Ray, Mechanical Behavior of Glass/Epoxy Composites at Liquid Nitrogen Temperature, Journal of Reinforced Plastics and Composites 27(9) 2008 937-944.

  81. B Das, S K Sahu and B. C. Ray, Effect of Loading Speed on the Failure Behavior of FRP Composites, Aircraft Engineering and Aerospace Technology, 79(1) 2007, 45-52.

  82. B.C. Ray, S T Hasan and D W Clegg; Evaluation of Defects in FRP Composites by NDT Techniques, Journal of Reinforced Plastics and Composites 26(12) 2007, 1187-1192.

  83. Surendra Kumar M, Nirmal Chawla, Asima Priyadarsini, Itishree Mishra and B. C. Ray, Assessment of Microstructural Integrity of Glass/Epoxy Composites at Liquid Nitrogen Temperature, Journal of Reinforced Plastics and Composites 26(11) 2007, 1083-1089.

  84. T Bera, S.Mula, P K Ray and B. C. Ray; Effect of Thermal Shocks and Thermal Spikes on Hygrothermal Behavior of Glass/polyester Composites, Journal of Reinforced Plastics and Composites 26(7) 2007, 725-738.

  85. A K Srivastava, M K Behera and B. C. Ray; Loading Rate Sensitivity of Jute/Glass Hybrid Reinforced Epoxy Composites: Effect of Surface Modifications, Journal of Reinforced Plastics and Composites, 26(9), 2007, 851-860.

  86. P K Ray, S Mula, U K Mohanty and B. C. Ray; Effect of hygrothermal shock cycles on interlaminar strength of hybrid composites, Journal of Reinforced Plastics and Composites 26(5) 2007, 519-324.

  87. B C. Ray, Effects of changing seawater temperature on mechanical properties of GRP composites, Polymers and Polymer Composites 15(1) 2007, 59-64.

  88. B C. Ray; Adhesion of glass/epoxy composites influenced by thermal and cryogenic environments, Journal of Applied Polymer Science 102(2) 2006, 1943-1949.

  89. B. C. Ray; Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of Colloid and Interface Science 298(1) 2006, 111-117.

  90. B. C. Ray; Effects of changing environment and loading speed on mechanical behavior of FRP composites, Journal of Reinforced Plastics and Composites 25(12) 2006, 1227-1240.

  91. B. C. Ray; Loading rate effects on mechanical properties of polymer composites at Ultra-low Temperatures, Journal of Applied Polymer Science 100(3) 2006, 2289-2292.

  92. B. C. Ray; Effect of thermal shock on interlaminar strength of thermally aged glass fiber reinforced epoxy composites, Journal of Applied Polymer Science 100(3) 2006, 2062-2066.

  93. B. C. Ray; Effect of thermal shock on flexural modulus of thermally and cryogenically conditioned Kevlar/epoxy composites, Advanced Composites Letters 14(2) 2005, 57-61.

  94. B. C. Ray; Loading rate sensitivity of glass fiber-epoxy composites at ambient and sub-ambient temperatures, Journal of Reinforced Plastics and Composites 25(3) 2006, 329-333.

  95. S Mula, T Bera, P K Ray, B. C. Ray; Effects of hydrothermal aging on mechanical behaviour of sub-zero weathered GFRP composites, Journal of Reinforced Plastics and Composites25(6) (2006) 673-80.

  96. B. C. Ray, S Mula, T Bera, P K Ray; Prior thermal spikes and thermal shocks on mechanical behavior of glass-epoxy composites, Journal of Reinforced Plastics and Composites 25(2)2006, 197-213.

  97. B. C. Ray; Freeze-thaw response of glass-polyester composites at different loading rates, Journal of Reinforced Plastics and Composites 24(16) 2005, 1771-1776.

  98. B. C. Ray; Effect of hydrothermal shock cycles on shear strength of glass fiber-polyester composites, Journal of Reinforced Plastics and Composites 24(12) 2005, 1335-1340.

  99. B. C. Ray; Hydrothermal fatigue on interface of glass-epoxy laminates, Journal of Reinforced Plastics and Composites, 24(10) 2005, 1051-1056.

  100. B. C. Ray; Effects of thermal and cryogenic conditionings on mechanical behavior of thermally shocked glass fiber-epoxy composites, Journal of Reinforced Plastics and Composites 24(7) 2005, 713-717.

  101. B. C. Ray; Thermal shock and thermal fatigue on delamination of glass fiber reinforced polymer composites, Journal of Reinforced Plastics and Composites, 24(1) 2005, 111-116.

  102. B. C. Ray; Effects of crosshead velocity and sub-zero temperature on mechanical behaviour of hygrothermally conditioned glass fibre reinforced epoxy composites, Materials Science and Engineering A 379(1-2) 2004,39-44.

  103. B. C. Ray; Thermal shock on interfacial adhesion of thermally conditioned glass/epoxy composites, Materials Letters 58(16) 2004, 2175-2177.

  104. B. C. Ray; Study of the influence of thermal shock on interfacial damage in thermosetting matrix aramid fibre composites, Journal of Materials Science Letters 22 (3) 2003 201-202.

  105. B. C. Ray, S T Hasan& D W Clegg; Effects of thermal shock on modulus of thermally and cryogenically conditioned Kevlar/polyester composites, Journal of Materials Science Letters 22(3) 2003, 203-204.

  106. B. C. Ray; Assessment of mechanical behaviour of Kevlar/polyester composites after thermal shock conditioning, Journal of Materials Science Letters 21(18) 2002, 1391-1392.

  107. B. C. Ray, A Biswas & P K Sinha; Freezing and thermal spikes effects on ILSS values of hygrothermally conditioned glass fibre/epoxy composites, J. Mater. Sci. Lett. 11 (1992) 508.

  108. B. C. Ray, A Biswas & P K Sinha: Hygrothermal effects on the mechanical behaviour of fibre-reinforced polymeric composites, Metal Materials and Processes, 3, 2 (1991), 99.

International Publications